skip to main content


Search for: All records

Creators/Authors contains: "Doan-Nguyen, Vicky"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Free-standing conducting polymer films, polypyrrole doped with dodecylbenzene sulfonate, were obtained with electrochemical delamination by using redox cycling to delaminate electropolymerized film from the substrate. The use of electrochemical delamination to obtain thinner films than mechanical peeling and the effect of different electropolymerization substrates was investigated. The free-standing films were characterized with electrochemical filling efficiency and scanning electron microscopy. Electrochemical delamination allowed thin free-standing films <10 μm and <1 μm thick to be obtained from 304 stainless steel and gold substrates, respectively. The thinnest films obtainable from 304 stainless steel were limited by the electropolymerization charge density needed for complete film growth and not by electrochemical delamination. The filling efficiency of the films did not appear to be decreased by electrochemical delamination. These findings show the utility of electrochemical delamination to obtain thin free-standing films that also have the benefits of electropolymerization.

     
    more » « less
  2. A symmetry-based approach leads to the efficient discovery of magnets hosting topological magnons. 
    more » « less
  3. Polymer-derived ceramic (PDC) nanocomposites enable access to a large library of functional properties starting from molecular design and incorporating nanofillers. Tailoring preceramic polymer (PCP) chemistry and nanofiller size and morphology can lead to usage of the nanocomposites in complex shapes and coatings with enhanced thermal and mechanical properties. A rational design of targeted nanocomposites requires an understanding of fundamental structure–property–performance relations. Thus, we tailor our discussions of PCP design and nanofiller integration into single source precursors as well as pyrolytic processing for functionalizing PDCs. We also discuss the promises and limitations of advanced characterization techniques such as 4D transmission electron microscopy and pair distribution functions to enable in situ mapping structural evolution. The feedback loop of in situ monitoring sets the foundation for enabling accelerated materials discovery with artificial intelligence. This perspective assesses the recent progress of PDC nanocomposite research nanocomposites and presents scientific and engineering challenges for synthesis, fabrication, processing, and advanced characterization of PDC nanocomposites for enhanced magnetic, electrical, and energy conversion and storage properties. 
    more » « less
  4. Abstract

    Initially, vanadium dioxide seems to be an ideal first-order phase transition case study due to its deceptively simple structure and composition, but upon closer inspection there are nuances to the driving mechanism of the metal-insulator transition (MIT) that are still unexplained. In this study, a local structure analysis across a bulk powder tungsten-substitution series is utilized to tease out the nuances of this first-order phase transition. A comparison of the average structure to the local structure using synchrotron x-ray diffraction and total scattering pair-distribution function methods, respectively, is discussed as well as comparison to bright field transmission electron microscopy imaging through a similar temperature-series as the local structure characterization. Extended x-ray absorption fine structure fitting of thin film data across the substitution-series is also presented and compared to bulk. Machine learning technique, non-negative matrix factorization, is applied to analyze the total scattering data. The bulk MIT is probed through magnetic susceptibility as well as differential scanning calorimetry. The findings indicate the local transition temperature ($$T_c$$Tc) is less than the average$$T_c$$Tcsupporting the Peierls-Mott MIT mechanism, and demonstrate that in bulk powder and thin-films, increasing tungsten-substitution instigates local V-oxidation through the phase pathway VO$$_2\, \rightarrow$$2V$$_6$$6O$$_{13} \, \rightarrow$$13V$$_2$$2O$$_5$$5.

     
    more » « less
  5. Magnetic excitations in van der Waals (vdW) materials, especially in the two-dimensional (2D) limit, are an exciting research topic from both the fundamental and applied perspectives. Using temperature-dependent, magneto-Raman spectroscopy, we identify the hybridization of two-magnon excitations with two phonons in manganese phosphorus triselenide (MnPSe 3 ), a magnetic vdW material that hosts in-plane antiferromagnetism. Results from first-principles calculations of the phonon and magnon spectra further support our identification. The Raman spectra’s rich temperature dependence through the magnetic transition displays an avoided crossing behavior in the phonons’ frequency and a concurrent decrease in their lifetimes. We construct a model based on the interaction between a discrete level and a continuum that reproduces these observations. Our results imply a strong hybridization between each phonon and a two-magnon continuum. This work demonstrates that the magnon-phonon interactions can be observed directly in Raman scattering and provides deep insight into these interactions in 2D magnetic materials. 
    more » « less
  6. null (Ed.)